

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Question Paper Log Number P66026RA Publications Code 4PM1_01_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

You must always check the working in the body of the script (and on any diagrams) irrespective of whether the final answer is correct or incorrect and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect: eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x = \dots$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x = \dots$

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

4. Use of calculators

Unless the question specifically states 'show' or 'prove' accept correct answers from no working. If an incorrect solution is given without any working do not award the Method mark.

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication

from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this: eg in a case of "prove or show....")

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Multiple attempts at a question.

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

Question number	Scheme	Marks
1	$\alpha + \beta = \frac{3}{4}, \ \alpha\beta = -2$	B1B1
	Sum: $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{3}{4}}{-2} = -\frac{3}{8} = \left(-\frac{b}{\alpha}\right)$	M1A1
	Product: $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = -\frac{1}{2} = \left(\frac{c}{a}\right)$	B1ft
	Equation: $x^{2} + \frac{3}{8}x + \left(-\frac{1}{2}\right) = 0 \Longrightarrow 8x^{2} + 3x - 4 = 0$	M1A1ft [7]
	Tot	al 7 marks

Mark	Notes
B1	For correct value for $\alpha + \beta$
B1	For correct value for $\alpha\beta$
M1	For the sum $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{their \frac{3}{4}}{their - 2}$
	Allow use of their stated $\alpha + \beta$ and $\alpha\beta$
A1	For the correct sum $-\frac{3}{8}$
B1ft	For the correct value of the product $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = -\frac{1}{2}$
	FT their stated $\alpha + \beta$ and $\alpha\beta$
M1	For correctly forming an equation with their sum and product $x^{2} - \frac{'-3'}{8}x + -\frac{'1'}{2}(=0)$
	Condone the absence of =0 for this mark.
A1ft	For the correct equation $8x^2 + 3x - 4 = 0$ oe
	Follow through from their sum and product. Must be integer coefficients and constant.

Question number	Scheme	Marks
2	$(p-1)^2 - 4 \times 2 \times -2p > 0 \Rightarrow p^2 + 14p + 1 > 0$ critical values	M1A1
	$p = \frac{-14 \pm \sqrt{14^2 - 4 \times 1 \times 1}}{2} = -7 \pm 4\sqrt{3}$	M1
	$p < -7 - 4\sqrt{3} \text{ OR } p > -7 + 4\sqrt{3}$	M1A1 [5]
	T	otal 5 marks

Mark	Notes
M1	Uses $b^2 - 4ac$ on the given quadratic equation with correct <i>a</i> , <i>b</i> , <i>c</i> ;
	a = 2
	b = p - 1
	c = -2p
	and a correct substitution to obtain $(p-1)^2 - 4 \times 2 \times -2p$
	Note: Accept for this mark any inequality, equals sign and even $b^2 - 4ac$ used on its own.
A1	For the correct 3TQ with the correct inequality.
	Note: Allow \geq or \leq in place of > and < for this mark.
	$p^2 + 14p + 1 > 0$ or $-p^2 - 14p - 1 < 0$
M1	For an attempt to solve their $3TQ$ (provided it is a $3TQ$) in terms of p by any acceptable
	method to obtain 2 values for p.
	See General Guidance for the definition of an attempt by factorisation, formula or completing
	the square.
	Use of calculators: it their 3TQ is incorrect, do not award this mark if working is not seen.
	$p = \frac{-14 \pm \sqrt{14^2 - 4 \times 1 \times 1}}{2} = -7 \pm 4\sqrt{3}$ oe
	Accept awrt -13.9, awrt -0.072
M1	For forming the correct inequalities with their critical values, provided they have been
	obtained from a 3TQ.
	$p < -7 - 4\sqrt{3} \text{ OR } p > -7 + 4\sqrt{3} \text{ oe}$
	ft their values from their $p^2 + 14p + 1 > 0$ or $-p^2 - 14p - 1 < 0$
	Note: Condone use of AND for this mark. Condone \geq or \leq in place of $>$ and $<$ for this mark.
	Accept awrt -13.9, awrt -0.072
A1	For the correct inequality.
	$p < -7 - 4\sqrt{3}$ oe OR $p > -7 + 4\sqrt{3}$ oe
	Note: Must not indicate AND for this mark.
	Accept awrt -13.9, awrt -0.072

Question number	Scheme	Marks
3	Mark parts (i) and (ii) together	
	$\frac{r^2\theta}{2} = 16.8 \Longrightarrow \left(\theta = \frac{33.6}{r^2}\right)$	B1
	$r\theta + 2r = 16.4$	B1
	$r\left(\frac{33.6}{r^2}\right) + 2r = 16.4 \Longrightarrow r^2 - 8.2r + 16.8 = 0$	M1M1
	$r = \frac{8.2 \pm \sqrt{\left(8.2\right)^2 - 4 \times 1 \times 16.8}}{2 \times 1} = 4, \ (4.2)$	dM1A1
	$\theta = \frac{33.6}{4^{\prime 2}} = 2.1$	dM1A1 [8]
	ALT $r\left(\frac{33.6}{r^2}\right) + 2r = 16.4 \Longrightarrow 5r^2 - 41r + 84 = 0 \Longrightarrow (5r - 21)(r - 4) = 0$	[M1M1
	$\Rightarrow r = 4, \left(\frac{21}{5}\right)$	dM1A1
	$\theta = \frac{33.6}{4^{1/2}} = 2.1$	dM1A1]
	ALT– elimination of r by substitution $\frac{r^2\theta}{2} = 16.8$	[B1
	$\frac{1}{2} = 10.3$ $r\theta + 2r = 16.4 \left(\Rightarrow r = \frac{16.4}{(\theta + 2)}\right)$	B1
	$\frac{\left(\frac{16.4}{(\theta+2)}\right)^2}{2}\theta = 16.8$	M1 M1
	$33.6\theta^2 - 134.56\theta + 134.4 = 0$ $\theta = 2.1, (1.90)$	dM1A1
	$r = \sqrt{\frac{33.6}{2.17}}$ or $r = \sqrt{\frac{33.6}{1.907}} \Rightarrow r = 4, \left(\frac{21}{5}\right)$	dM1A1
	ALT	B1
	$\frac{r^2\theta}{2} = 16.8 \Rightarrow \left(r = \sqrt{\frac{33.6}{\theta}}\right)$	B1
	$r\theta + 2r = 16.4$	M1
	$16.4 = 2\sqrt{\frac{33.6}{\theta}} + \theta\sqrt{\frac{33.6}{\theta}} \Rightarrow 16.4 = (2+\theta)\sqrt{\frac{33.6}{\theta}}$	M1
	$33.6\theta^2 - 134.56\theta + 134.4 = 0$	dM1A1]

$$\theta = 2.1, (1.90 \dots)$$

$$r = \sqrt{\frac{33.6}{2.12}} \text{ or } r = \sqrt{\frac{33.6}{1.90 \dots 2}} \Rightarrow r = 4, \left(\frac{21}{5}\right)$$
Total 8 marks

Monk	Notos
Mark	Notes
B1	Uses the correct formula for the area of a sector to give $r^{2}\theta$
	$\frac{r^2\theta}{2} = 16.8$
B1	Uses the correct formula for the length of an arc to give
	$r\theta + 2r = 16.4$
M1	For attempting to eliminate θ by substitution:
	$r\left(\frac{33.6}{r^2}\right) + 2r = 16.4$
	An attempt involves rearrangement of their linear equation to $\theta = \cdots$ followed by substitution
	into the area of a sector equation or rearrangement of their area of a sector equation to $\theta = \cdots$
	followed by substitution into the linear equation. Allow if 2r omitted in their perimeter
	equation.
M1	For forming a 3TQ in <i>r</i> using only their expressions.
	$r^2 - 8.2r + 16.8 = 0$ or $5r^2 - 41r + 84 = 0$
dM1	For an attempt to solve their 3TQ to give at least one value of <i>r</i>
	See General Guidance for the definition of an attempt.
	This mark is dependent on the first M mark being awarded.
A1	For the correct value of <i>r</i> :
	r = 4, (4.2)
	Reject $r = 4.2$ if given.
M1	For substituting <i>their r</i> into one of the two equations and rearranging to obtain θ
A1	For the correct value of θ .
	$\theta = 2.1$
	Condone the value of θ that corresponds to 4.2 being included.
	elimination of r by substitution
M1	For attempting to eliminate r by substitution:
	$\frac{\left(\frac{16.4}{(\theta+2)}\right)^2}{2}\theta = 16.8 \text{ or } 16.4 = 2\sqrt{\frac{33.6}{\theta}} + \theta\sqrt{\frac{33.6}{\theta}}$
	$\frac{1}{2}\theta = 16.8 \text{ or } 16.4 = 2\sqrt{\frac{\theta}{\theta}} + \theta\sqrt{\frac{\theta}{\theta}}$
	An attempt involves rearrangement of their linear equation to $r = \cdots$ followed by substitution
	into the area of a sector equation or rearrangement of their area of a sector equation to $r = \cdots$
	followed by substitution into the linear equation. Allow if 2r omitted in their perimeter
	equation.
M1	For forming a 3TQ in θ using only their expressions.
	$33.6\theta^2 - 134.56\theta + 134.4 = 0$
dM1	For an attempt to solve their 3TQ to give at least one value of θ
	See General Guidance for the definition of an attempt.
	This mark is dependent on the first M mark being awarded.
A1	For the correct value of θ .
	$\theta = 2.1$
N/1	Condone the value of θ that corresponds to 4.2 being included.
M1	For substituting <i>their</i> θ into one of the two equations and rearranging to obtain <i>r</i>
A1	For the correct value of r :
	r = 4, (4.2)
	Reject $r = 4.2$ if given.
	Note: In epen, award first A for r, second A for θ

Question number	Scheme	Marks
4	$\frac{dy}{dx} = \frac{2\cos 2x(x^2 - 9)^{\frac{1}{2}} - \frac{1}{2} \times 2x\sin 2x(x^2 - 9)^{-\frac{1}{2}}}{(x^2 - 9)}$	M1A1A1
	$\left\{\frac{dy}{dx} = \frac{2\cos 2x(x^2-9)^{\frac{1}{2}}(x^2-9)^{\frac{1}{2}} - \frac{1}{2} \times 2x \times \sin 2x}{(x^2-9)^{\frac{1}{2}}} \right\}$	
	$\left \frac{\mathrm{d}x}{\mathrm{d}x} - \frac{(x^2 - 9)}{(x^2 - 9)} \right $	
	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}} *$	dM1A1 cso [5]
	ALT	
	$y = \sin(2x) (x^2 - 9)^{-\frac{1}{2}}$ $\frac{dy}{dx} = 2\cos(2x)(x^2 - 9)^{-\frac{1}{2}} + \sin(2x) \left(-\frac{1}{2}\right)(2x)(x^2 - 9)^{-\frac{3}{2}}$	[M1A1A1
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos(2x)(x^2 - 9) - x\sin(2x)}{(x^2 - 9)^{\frac{3}{2}}}\right\}$	
	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos(2x) - x\sin(2x)}{\sqrt{(x^2 - 9)^3}} *$	dM1A1 cso]
	Τα	otal 5 marks

Mark	Notes
M1	For an attempt at Quotient rule.
	The definition of an attempt is that there must be a correct attempt to differentiate at least one
	term and the denominator must be $(\sqrt{x^2-9})^2$.
	Allow the terms in the numerator to be the wrong way around, but the terms must be
	subtracted.
	Attempt at differentiation of the terms:
	$sin(2x) \rightarrow k cos(2x)$ where k is an integer
	$(x^2 - 9)^{\frac{1}{2}} \rightarrow lx(x^2 - 9)^{-\frac{1}{2}}$
A1	For correct differentiation of at least one term.
	$2\cos(2x)(x^2-9)^{\frac{1}{2}}$ or $-\frac{1}{2} \times 2x\sin 2x(x^2-9)^{-\frac{1}{2}}$
A1	For a fully correct Quotient rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2x(x^2-9)^{\frac{1}{2}} - \frac{1}{2} \times 2x\sin 2x(x^2-9)^{-\frac{1}{2}}}{2}$
	$\frac{1}{\mathrm{d}x} = \frac{1}{(x^2 - 9)}$

dM1	For an attempt to rearrange to the given form.
	Dependent on M1 being scored.
	An attempt requires obtaining a single fraction and multiplying numerator and denominator
	by $(x^2 - 9)^{\frac{1}{2}}$ (see {} in mark scheme).
A1	Fully correct method to show
cso	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}}$
	$\frac{dx}{dx} = \frac{\sqrt{(x^2-9)^3}}{\sqrt{(x^2-9)^3}}$
	Allow with $\sqrt{(x^2 - 9)^3}$ given as $(x^2 - 9)^{\frac{3}{2}}$ or $\sqrt{(x^2 - 9)^3}$
ALT – J	product rule
M1	For an attempt at Product rule.
	The definition of an attempt is that there must be a correct attempt to differentiate at least one
	term.
	Attempt at differentiation of the terms:
	$\sin(2x)(x^2-9)^{-\frac{1}{2}} \to k\cos(2x)(x^2-9)^{-\frac{1}{2}}$ where k is an integer
	$\sin(2x) \left(x^2 - 9\right)^{-\frac{1}{2}} \to lx \sin(2x) \left(x^2 - 9\right)^{-\frac{3}{2}}$
A1	For correct differentiation of at least one term.
	Either $2\cos(2x)(x^2-9)^{-\frac{1}{2}}$ or $\sin(2x)\left(-\frac{1}{2}\right)(2x)(x^2-9)^{-\frac{3}{2}}$
A1	For a fully correct Product rule
	$\frac{dy}{dx} = 2\cos(2x)(x^2 - 9)^{-\frac{1}{2}} + \sin(2x)\left(-\frac{1}{2}\right)(2x)(x^2 - 9)^{-\frac{3}{2}}$
dM1	For an attempt to rearrange to the given form.
	Dependent on M1 being scored.
	An attempt requires obtaining a single fraction and multiplying numerator and denominator
	by $(x^2 - 9)^{\frac{3}{2}}$ (see {} in mark scheme).
A1	Fully correct method to show
cso	$\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}}$
	Allow with $\sqrt{(x^2 - 9)^3}$ given as $(x^2 - 9)^{\frac{3}{2}}$ or $\sqrt{(x^2 - 9)^3}$

Question number	Scheme	Marks
5	$\log_{3}\sqrt{x-5} + \log_{9}(x+3) - 1 = 0$ $\frac{1}{2}\log_{3}(x-5) + \frac{\log_{3}(x+3)}{\log_{3}9} = 1 \Rightarrow \left(\frac{1}{2}\log_{3}(x-5) + \frac{\log_{3}(x+3)}{2} = 1\right)$ $\log_{3}(x-5) + \log_{3}(x+3) = 2 \Rightarrow \log_{3}\left[(x-5)(x+3)\right] = 2$ $\Rightarrow (x-5)(x+3) = 3^{2} \Rightarrow x^{2} - 2x - 24 = 0$ $(x+4)(x-6) = 0 \Rightarrow x = 6 \text{ (reject } x = -4)$	M1M1 M1 M1A1 dM1A1 [7]
	Tot	al 7 marks

Mark	Notes
	1 – Works in base 3
M1	Uses $n \log A = \log A^n$ correctly to write
	$\log_3 \sqrt{x-5} = \frac{1}{2} \log_3(x-5)$
M1	
IVII	For an attempt to change the base of $\log_9(x+3)$ to base 3 using $\log_a x = \frac{\log_b x}{\log_b a}$
	$\log_9(x+3) = \frac{\log_3(x+3)}{\log_3 9} = \frac{\log_3(x+3)}{2} \qquad [\operatorname{accept} \frac{\log_3(x+3)}{p} \text{ where } p \neq 1]$ Uses $\log A + \log B = \log AB$ to correctly combine the logs
M1	Uses $\log A + \log B = \log AB$ to correctly combine the logs
	$\log_3(x-5) + \log_3(x+3) = \log_3(x-5)(x+3)$
M1	For removing the logs in the equation to obtain $(x - 5)(x + 3) = 3^2$ and rearranging to a
	3TQ
A1	For obtaining a correct 3TQ.
	$x^2 - 2x - 24 = 0$
	2 – Works in base 9
M1	Uses $n \log A = \log A^n$ correctly to write
	$\log_3 \sqrt{x-5} = \frac{1}{2} \log_3(x-5)$
M1	For an attempt to change the base of $\log_3 \sqrt{x-5}$ or $\frac{1}{2}\log_3(x-5)$ to base 9 using
	$\log_a x = \frac{\log_b x}{\log_b a}$
	$\log_3 \sqrt{x-5} = \frac{\log_9 \sqrt{x-5}}{\log_9 3} = \frac{\log_9 \sqrt{x-5}}{1/2} = 2\log_9 \sqrt{x-5} \qquad [\text{accept } q \log_9 \sqrt{x-5} \text{ where } q \neq 1]$
	$\frac{1}{2}\log_3(x-5) = \frac{1}{2} \times \frac{\log_9(x-5)}{\log_9 3} = \frac{1}{2} \times \frac{\log_9(x-5)}{1/2} = \log_9(x-5)$
M1	Uses $\log A + \log B = \log AB$ to correctly combine the logs
	$\log_9(x-5) + \log_9(x+3) = \log_9(x-5)(x+3)$
M1	For removing the logs in the equation to obtain $(x - 5)(x + 3) = 9$ and rearranging to a
	3TQ
A1	For obtaining a correct 3TQ.
	$x^2 - 2x - 24 = 0$
	t to solve the quadratic equation
dM1	For an attempt to solve their 3TQ.
	See General Guidance for the definition of an attempt. Dependent on at least one previous M
A 1	mark scored.
A1	x = 6 Must reject $x = -4$ if this solution is also included
	Must reject $x = -4$ if this solution is also included.

Question number	Scheme	Marks
6	$\begin{bmatrix} \frac{dV}{dt} = 3 \ \left(\text{cm}^3 / \text{s} \right) \end{bmatrix}$ $V = \frac{4}{3} \pi r^3 \frac{dV}{dr} = 4\pi r^2, A = 4\pi r^2 \frac{dA}{dr} = 8\pi r$ $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt} \text{ oe}$ $\frac{dA}{dt} = [8\pi \times 10] \times \left[\frac{1}{4\pi \times 10^2} \right] \times 3 = 0.6 \ (\text{cm}^2/\text{s})$	M1A1,A1 (M1 for any one) M1
		dM1A1 [6]
	Te	otal 6 marks

Mark	Notes
M1	For using the correct formula for volume of a sphere or for surface area of a sphere and
	attempt to differentiate their expression.
	[See General Guidance for definition of attempt to differentiate]
A1	For one correct $\frac{dV}{dr} = 4\pi r^2$ or $\frac{dA}{dr} = 8\pi r$ For both correct $\frac{dV}{dr} = 4\pi r^2$ and $\frac{dA}{dr} = 8\pi r$
A1	For both correct $\frac{dV}{dr} = 4\pi r^2$ and $\frac{dA}{dr} = 8\pi r$
M1	For applying a correct Chain rule using their $\frac{dV}{dr}$, their $\frac{dA}{dr}$ and $\frac{dV}{dt} = 3$ to obtain
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt} = 8\pi r' \times \frac{1}{4\pi r^2} \times 3$
	May be seen in two stages.
dM1	For substitution of $r = 10$ into their expression for $\frac{dA}{dt}$ to obtain
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8\pi \times 10' \times \frac{1}{4\pi \times 10^2} \times 3$
A1	$\frac{\mathrm{d}t}{\mathrm{d}t} = 0.6 (\mathrm{cm}^2 /\mathrm{s})$

Question number	Scheme	Marks
7 (a)	Throughout this question condone missing degree signs	
	$\cos\theta^{\circ} = \frac{6^2 + 8^2 - k^2}{2 \times 6 \times 8} = \frac{100 - k^2}{96} *$	M1A1cso [2]
(b)	$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$	M1
	$\Rightarrow \sin \theta^{\circ} = \frac{\sqrt{455}}{24} \Rightarrow \left(\sin^2 \theta^{\circ} = \frac{455}{576} \right)$	A1
	$\cos^2 \theta^\circ = 1 - \sin^2 \theta^\circ \Longrightarrow \cos^2 \theta^\circ = 1 - \frac{455}{576} = \frac{121}{576}$	M1
	$\Rightarrow \cos \theta^{\circ} = \pm \frac{11}{24}$ both values required	A1
	$\cos \theta^{\circ} = \frac{11}{24} = \frac{100 - k^2}{96} \Longrightarrow k^2 = 56 \Longrightarrow k = \sqrt{56} = (2\sqrt{14})$	M1A1
	$\cos\theta^{\circ} = -\frac{11}{24} = \frac{100 - k^2}{96} \Longrightarrow k^2 = 144 \Longrightarrow k = 12$	A1
	ALT	[7]
	$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$	[M1
	$\Rightarrow \sin \theta^{\circ} = \frac{\sqrt{455}}{24}$	A1
	$\theta^{\circ} = \sin^{-1}\left(\frac{\sqrt{455}}{24}\right) \ (= 62.72 \dots^{\circ})$	M1
	$\theta^{\circ} = 62.72 \dots, 117.27 \dots$ both values required	A1
	$\cos\theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96\cos\theta^{\circ}$	M1A1
	$\Rightarrow k^2 = 100 - 96\cos 62.72 \dots \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$	
	$\cos\theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96\cos\theta^{\circ}$	A 11
	$\Rightarrow k^2 = 100 - 96 \cos 117.27 \dots \Rightarrow k^2 = 144 \Rightarrow k = 12$	A1] Fotal 9 marks
		i utai 7 illai KS

Part	Mark	Notes
(a)	M1	For correct substitution into the cosine rule and attempt to rearrange to find an
		expression for $\cos \theta^{\circ}$
	A1	For obtaining the given expression for $\cos \theta$
	cso	$\cos\theta \circ = \frac{100 - k^2}{96}$
		Note: This is a show question. There must be no errors seen.

(b)	M1	For using the correct formula for area of a triangle and substitution of the
(0)		given values to obtain
		$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$
		and attempt to rearrange to obtain $\sin \theta^{\circ} = \cdots$
	A1	
		$\sin \theta^{\circ} = \frac{\sqrt{455}}{24} \qquad \text{Allow for } \sin \theta = \frac{\sqrt{455}}{0.5 \times 8 \times 6}$
	M1	For use of $\sin^2 \theta + \cos^2 \theta = 1$ to obtain a value for $\cos \theta^\circ$.
		$\cos^2 \theta^\circ = 1 - \frac{'455'}{576} \Rightarrow \cos \theta^\circ = \pm \sqrt{1 - \frac{'455'}{576}}$
		Allow use of their $\sin \theta^{\circ}$ provided $-1 \leq \sin \theta^{\circ} \leq 1$
		Allow if only one value of $\cos \theta^{\circ}$ obtained.
	A1	$\cos\theta^{\circ} = \pm \frac{11}{24}$
	M1	For forming an equation for k using their $\cos \theta^{\circ}$ and attempt to solve for k.
		$\cos\theta^{\circ} = \frac{11}{24} = \frac{100 - k^2}{96} \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$
		21 90
		$\cos \theta^{\circ} = ' - \frac{11'}{24} = \frac{100 - k^2}{96} \Rightarrow k^2 = 144 \Rightarrow k = 12$
	A1	For one correct value of k
		$\sqrt{56}$ or awrt 7.48 or awrt 12
	A1	For both correct values of k
		$\sqrt{56}$ or awrt 7.48 and awrt 12
ALT – w	orking w	ith angles
	M1	For using the correct formula for area of a triangle and substitution of the
		given values to obtain
		$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$
		and attempt to rearrange to obtain $\sin \theta^{\circ} = \cdots$
	A1	and attempt to rearrange to obtain $\sin \theta^{\circ} = \cdots$ $\sin \theta^{\circ} = \frac{\sqrt{455}}{24}$ Allow for $\sin \theta = \frac{\sqrt{455}}{0.5 \times 8 \times 6}$
	M1	For use of the inverse trigonometric function to obtain a value for θ°
		$\theta^{\circ} = 62.72, 117.27$
		If working not shown then award for angle correct to a minimum of 1 d.p.
		Allow if only one value of θ° found.
	A 1	Condone working in radians awrt 1.09, awrt 2.05
	A1	$\theta^{\circ} = 62.72 \dots, 117.27 \dots$ Allow awrt $62.7^{\circ}, 117.3^{\circ}$
		Both angles found.
	M1	Condone working in radians awrt 1.09, awrt 2.05 For forming an equation in k using their θ and an attempt to solve for k .
		$\cos \theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96 \cos \theta^{\circ}$
		$\Rightarrow k^2 = 100 - 96 \cos 62.72 \dots \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$
		$\cos\theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96\cos\theta^{\circ}$
		$\Rightarrow k^2 = 100 - 96 \cos 117.27 \dots \Rightarrow k^2 = 144 \Rightarrow k = 12$
	A1	For one correct value of <i>k</i>
		$\sqrt{56}$ or awrt 7.48 or awrt 12
	A1	For both correct values of <i>k</i> and no others.
		$\sqrt{56}$ or awrt 7.48 and awrt 12
	I	v 50 01 awitt 7.40 and awitt 12

Question number	Scheme	Marks
8 (a)	$ \xrightarrow{OB} = \xrightarrow{OA} + \xrightarrow{AB} = \mathbf{a} + \mathbf{b} $	B1 [1]
(b)	$\overrightarrow{oc} = 2\mathbf{b}$	B1
	$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = -(\mathbf{a} + \mathbf{b}) + 2\mathbf{b} = \mathbf{b} - \mathbf{a}$	M1A1 [3]
(c)	$\xrightarrow[OM]{} = \xrightarrow[OB]{} + \xrightarrow[BM]{} = \mathbf{a} + \mathbf{b} + \frac{2}{3}(\mathbf{b} - \mathbf{a}) = \frac{\mathbf{a}}{3} + \frac{5\mathbf{b}}{3} \text{ or } \frac{1}{3}(\mathbf{a} + 5\mathbf{b})$	M1A1ft [2]
(d)	$ \underset{OY}{\rightarrow} = \mu \left(\frac{\mathbf{a}}{3} + \frac{5\mathbf{b}}{3}\right) = \frac{\mu \mathbf{a}}{3} + \frac{5\mu \mathbf{b}}{3} $	M1
	$\overrightarrow{\partial Y} = \overrightarrow{\partial A} + \overrightarrow{\partial Y} = \boldsymbol{a} + \lambda \boldsymbol{b}$	M1
	$\Rightarrow \frac{\mu}{2} = 1$ and $\frac{5\mu}{2} = \lambda$	M1
	Solves simultaneous equations by any method	M1
	$\mu = 3, \lambda = 5$	A1
	AB:BY=1:4	[5]
	ALT	
	$\underset{BY}{\rightarrow} = \lambda \underset{AB}{\rightarrow} = \lambda \mathbf{b}$	[M1
	$ \underset{BY}{\rightarrow} \underset{OY}{\rightarrow} \underset{OY}{\rightarrow} \underset{BO}{\rightarrow} + \underset{OM}{\rightarrow} \underset{OM}{\rightarrow} \underset{A}{\rightarrow} -(\boldsymbol{a} + \mathbf{b}) + \mu \left(\frac{1}{3}\mathbf{a} + \frac{5}{3}\boldsymbol{b}\right) $	M1
	$= \left(-1 + \frac{1}{3}\mu\right)\mathbf{a} + \left(-1 + \frac{5}{3}\mu\right)\mathbf{b}$	M1
	$\Rightarrow -1 + \frac{1}{3}\mu = 0 \text{ and } \lambda = -1 + \frac{5}{3}\mu$	241
	$\mu = 3, \lambda = 4$ AB : BY = 1:4	M1 A1]
(e)	$10 = \frac{1}{2}ab\sin 60^\circ \Longrightarrow ab = \frac{40}{\sqrt{3}} \Longrightarrow a = \frac{40}{b\sqrt{3}}$	M1A1
	Area $=\frac{1}{2}a \times 5b \sin 120^{\circ} = \frac{1}{2} \times \frac{40}{b\sqrt{3}} \times 5b \sin 120^{\circ}$	dM1
	Area = 50	A1
		[4]
	ALT	[M1
	$\frac{\text{Area } OAY}{\text{Area } OAB} = \frac{\frac{1}{2} \times h \times 5}{\frac{1}{2} \times h \times 1} = \frac{5}{1}$	A1
	Area $OAY = 5 \times Area OAB$	dM1
	Area $OAB = 10$	
	Area = 50	A1]
	Tota	l 15 marks

Part	Mark	Notes
(a)	B1	For a correct expression for $\xrightarrow{\rightarrow}$ in terms of a and b
(b)	B1	For a correct expression for $\rightarrow \alpha$
	M1	For a correct vector statement for \overrightarrow{BC} : $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$
		This mark can be implied by a correct (unsimplified) vector using their \rightarrow_{OB} .
		Vector statement must be suitable for substitution to find \rightarrow_{RC}
	A1	For the correct simplified \xrightarrow{BC}_{BC} in terms of a single a and b only.
		$\underset{BC}{\rightarrow} = \mathbf{b} - \mathbf{a}$
		If answer $\underset{BC}{\rightarrow} = \mathbf{b} - \mathbf{a}$ seen without wrong working then award B1M1A1.
(c)	M1	For a correct vector statement for $\rightarrow: \longrightarrow_{OM} = \xrightarrow{OH} + \frac{2}{3} \xrightarrow{BC}$
		$OM OM OB ^{3}BC$ This mark can be implied by a correct (unsimplified) vector using their \xrightarrow{OB}_{OB} and
		their \xrightarrow{BC} OB
	A1ft	For the correct simplified using their \rightarrow_{OM} in terms of a single a and b only.
	11110	
		$\underset{OM}{\longrightarrow} = \frac{a}{3} + \frac{5b}{3} \text{ or } \frac{1}{3}(a+5b)$
(d)	M1	M1 for one correct statement of route for \rightarrow
	M1	M1 for second correct statement of route for \xrightarrow{OY}_{OY}
		OY
		$\overrightarrow{OY} = \mu \overrightarrow{OM}$ (or any other variable in place of μ)
		$\overrightarrow{OY} = (\overrightarrow{OA} + \overrightarrow{AY}) = \mathbf{a} + \lambda \mathbf{b}$ (or any other variable in place of λ , provided this is
		$OY = (OA + AY)^2$ at the (of any other variable in place of M , provided and is in different to their μ).
		Allow use of their vectors from earlier parts of the question.
	M1	For equating their coefficients of a and b to obtain two equations.
		Mark intent – one must be correct, condone slips in second.
	M1	Solving their simultaneous equations by any method. Only the value for their λ is required for this mark.
	A1	For $AB:BY = 1:4$
ALT – u		oute, use also for \rightarrow_{AY} route
	BY M1	AY M1 for one correct statement of route for \rightarrow
	M1	M1 for second correct statement of route for \rightarrow
		BY
		$\underset{BY}{\rightarrow} = \lambda \underset{AB}{\rightarrow} = \lambda \mathbf{b} \text{ (or any other variable in place of } \lambda)$
		$ \stackrel{BY}{\longrightarrow} \stackrel{AB}{\longrightarrow} $
		$= \left(-1 + \frac{1}{3}\mu\right)\mathbf{a} + \left(-1 + \frac{5}{3}\mu\right)\mathbf{b} \text{ (or any other variable in place of }\mu$
		provided this is different to their λ).
		Allow use of their vectors from earlier parts of the question.
	M1	For equating their coefficients of \mathbf{a} and \mathbf{b} to obtain two equations.
		Mark intent – one must be correct, condone slips in second.
	M1	Solving their simultaneous equations by any method.
	A1	Only the value for their λ is required for this mark. For $AB:BY = 1:4$
L	л	101 DD. D1 - 1.7

(e)	M1	For use of the correct formula for area of a triangle with 60° and correct value
(0)		of sin 60°
		_
		$10 = \frac{1}{2}ab\sin 60^\circ = ab \times \frac{\sqrt{3}}{4}$
	A1	For correct expression for <i>ab</i> or <i>a</i>
		$ab = \frac{40}{\sqrt{3}}$ or $a = \frac{40}{b\sqrt{3}}$
	dM1	For use of the correct formula for area of a triangle with 120° and attempt to
		substitute for <i>ab</i> or <i>a</i> .
		Area $=\frac{1}{2}a \times 5'b \sin 120^\circ = \frac{1}{2} \times \frac{40}{b\sqrt{3}} \times 5'b \sin 120^\circ$
		or
		Area $=\frac{1}{2}a \times 5'b \sin 120^\circ = \frac{1}{2} \times ab \times 5' \sin 120^\circ = \frac{1}{2} \times \frac{40}{\sqrt{3}} \times 5' \sin 120^\circ$
		Dependent on the first M awarded.
		Allow use of their λ from part (d).
	A1	For the correct area
		Area = 50
ALT – us	se of ratio	os of areas
	M1	For use of their ratio AB: BY to write an equation linking area OAY and area
		OAB
		Area <i>OAY</i> $\frac{1}{2} \times h \times (1+4')$ 151
		$\frac{\operatorname{Area} OAY}{\operatorname{Area} OAB} = \frac{\frac{1}{2} \times h \times (1 + 4')}{\frac{1}{2} \times h \times 1} = \frac{75}{1}$
	A1	For correct relationship between area OAY and area OAB
	dM1	For a correct method to find the area of <i>OAB</i>
		Dependent on first M mark being awarded.
	A1	For the correct area
		Area = 50

Question number	Scheme	Marks
9 (a)	$a = 5 \times 1 - 1 = 4$	B1
	d = 5 $S_n = \frac{n}{2} \left(2 \times 4 + [n-1]5 \right) = \frac{n}{2} \left(3 + 5n \right)^* \text{cso}$	M1A1 [3]
	ALT a = 4 l = 5n - 1 $S_n = \frac{n}{2}(a + l) = \frac{n}{2}(4 + 5n - 1) = \frac{n}{2}(3 + 5n) * cso$	[B1 M1A1]
(b)	$\sum_{r=10}^{20} (5r-1) = \sum_{r=1}^{20} (5r-1) - \sum_{r=1}^{9} (5r-1)$	B1
	$\sum_{r=10}^{20} (5r-1) = \frac{20}{2} (3+5\times20) - \frac{9}{2} (3+5\times9)$	M1
	=1030-216=814 ALT	A1 [3]
	$a = 4 + 9 \times 5 = 49, \ l = 4 + 20 \times 5 = 99, \ n = 20 - 10 + 1 = 11$	[B1
	$\sum_{r=10}^{20} (5r-1) = \frac{11}{2} (49+99) = 814$	M1A1]
	ALT $a = 5 \times 10 - 1 = 49$ d = 5	[B1
	n = 11 $S_n = \frac{11}{2}(2 \times 49 + (11 - 1) \times 5) = 814$	M1A1]
(c)	$\frac{n}{2}(3+5n) = 12(4+5n) + 52 \Longrightarrow 5n^2 - 117n - 200 = 0$	M1M1A1
	$\Rightarrow (n-25)(5n+8) = 0 \Rightarrow n = 25, \ \left(n \neq -\frac{8}{5}\right)$	M1A1 [5]
	Tota	l 11 marks

Part	Mark	Notes
(a)	B1	For finding the first term and common difference.
		$a = 5 \times 1 - 1 = 4$
		d = 5
		May be implied by correct values seen in summation formula.
	M1	Uses a correct form of the summation formula for an arithmetic series with
		their a and their d provided their a and their d are stated.
		$S_n = \frac{n}{2} (2 \times 4' + [n-1] \times 5')$
	A1	For obtaining the given answer in full with no errors.
	cso	$\sum_{r=1}^{n} (5r - 1) = \frac{n}{2} (3 + 5n)$
Alternati	ve metho	d
	B1	For finding the first term and an expression for the last term.
		a = 4
		l = 5n - 1

		May be implied by correct values seen in summation formula.
	M1	Uses a correct form of the summation formula for an arithmetic series with
		their a and their l provided their a and their l are stated.
		$S_n = \frac{n}{2}(a+l) = \frac{n}{2}('4' + '5n - 1')$
	A1	For obtaining the given answer in full with no errors.
	CSO	$\sum_{r=1}^{n} (5r - 1) = \frac{n}{2} (3 + 5n)$
Note: If s review.	standard s	summation results are correctly used award B1M1A1, if not fully correct send to
(b)	B1	For correctly giving the required summation as the difference between two
		summations starting at $r = 1$.
		$\frac{\sum_{r=10}^{20} (5r-1) = \sum_{r=1}^{20} (5r-1) - \sum_{r=1}^{9} (5r-1)}{\text{For substitution of } n = 20 \text{ and } n = '9' \text{ into the result from part (a) and}}$
	M1	For substitution of $n = 20$ and $n = '9'$ into the result from part (a) and
		subtracting.
		$\frac{20}{2}(3+5\times 20) - \frac{9}{2}(3+5\times 9)$
		Allow for use of 9 or 10.
	A1	For the correct summation 814
Alternat		
	B1	For finding the first term, last term and number of terms for the arithmetic
		sequence.
		a = 49, l = 99, n = 11
	M1	Uses a correct summation formula for an arithmetic series with their <i>a</i> , their <i>l</i> and their <i>n</i> provided these are stated.
		$\frac{'11'}{2}('49'+'99')$
	A1	For the correct summation 814
Alternat	ive meth	od – considering this as a series starting at the 10 th term of the original series
	B1	For finding the first term, common difference and number of terms.
		$a = 5 \times 10 - 1 = 49$
		d = 5
		n = 11
	M1	Uses a correct form of the summation formula for an arithmetic series with
		their <i>a</i> , <i>their d</i> , and <i>their n</i> provided their <i>a</i> and their <i>d</i> and their <i>n</i> are stated and their $n \neq 20$
		$S_n = \frac{'11'}{2} (2 \times '49' + ('11' - 1) \times '5')$
		$15_{m} = -(2 \times 49 + (11 - 1) \times 5)$
1		
	A1	For the correct summation 814
(c)	A1 M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n .
(c)	M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4
(c)		For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their
(c)	M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n .
(c)	M1 M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$
(c)	M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ
(c)	M1 M1 A1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ $5n^2 - 117n - 200 = 0$ oe
(c)	M1 M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ
(c)	M1 M1 A1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ $5n^2 - 117n - 200 = 0$ oe For an attempt to solve their 3TQ. See General Guidance for the definition of an attempt.
(c)	M1 M1 A1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ $5n^2 - 117n - 200 = 0$ oe For an attempt to solve their 3TQ.
(c)	M1 M1 A1 M1	For the correct summation 814 Uses $5r - 1$ with $n + 1$ to find an expression for u_{n+1} in terms of n . 5r - 1 = 5(n + 1) - 1 = 5n + 4 Forms a correct equation for n using the result given in part (a) and their expression for $5r - 1$ in terms of n . $\frac{n}{2}(3 + 5n) = 12('4 + 5n') + 52$ Obtains a correct 3TQ $5n^2 - 117n - 200 = 0$ oe For an attempt to solve their 3TQ. See General Guidance for the definition of an attempt. $(n - 25)(5n + 8) = 0 \Rightarrow n = 25, (n = -\frac{8}{5})$

Question number	Scheme	Marks
10 (a)	$\frac{1}{2} + \sin 3x = 0 \Longrightarrow \sin 3x = -\frac{1}{2} \Longrightarrow 3x = -\frac{\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \Longrightarrow x = \frac{7\pi}{18}, \frac{11\pi}{18}$	M1
	Coordinates of <i>M</i> are $\left(\frac{7\pi}{18}, 0\right)^*$	A1
	Coordinates of <i>N</i> are $\left(\frac{11\pi}{18}, 0\right)$	A1 [3]
	$ALT = \frac{1}{2} + \sin\left(3 \times \frac{7\pi}{18}\right) = 0$	0.4
	Coordinates of M are $\left(\frac{7\pi}{18}, 0\right) *$	[M1
	Coordinates of N are $\left(\frac{11\pi}{18}, 0\right)$	A1
(b)	$\frac{dy}{dx} = 3\cos 3x = 0 \Longrightarrow 3x = \frac{\pi}{2} \Longrightarrow x = \frac{\pi}{6}$	A1]
		M1A1
	$y = \frac{1}{2} + \sin 3 \left(\frac{\pi}{6} \right) = 1.5$	dM1A1 [4]
	Coordinates of point <i>A</i> are $\left(\frac{\pi}{6}, 1.5\right)$	
	\mathbf{ALT}	
	Max of sine curve is 1 so that $\frac{1}{2} + 1 = \frac{3}{2} \Rightarrow y = \frac{3}{2}$ $\sin 3\theta = 1 \Rightarrow 3\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{6}$	[M1A1
	Sin So = 1 = So = $\frac{1}{2}$ = 0 = $\frac{1}{6}$ [Coordinates of point A are $\left(\frac{\pi}{6}, \frac{3}{2}\right)$]	dM1A1]
(c)	$\begin{bmatrix} 6 & 2 \end{bmatrix}$ Uses the given x coordinate for point M	
	At point $M = 3\cos\left(3 \times \frac{7\pi}{18}\right) = -\frac{3\sqrt{3}}{2}$	B1
	$y - 0 = -\frac{3\sqrt{3}}{2} \left(x - \frac{7\pi}{18} \right) \Longrightarrow 12y + 18\sqrt{3}x - 7\sqrt{3}\pi = 0 \text{ o.e.}$	M1A1A1 [4]
(d)	$A = \int_{0}^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) \mathrm{d}x + \left[\int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) \mathrm{d}x \right]$	M1
	$A = \left[\frac{1}{2}x - \frac{\cos 3x}{3}\right]_{0}^{\frac{7\pi}{18}} + \left[\left[\frac{1}{2}x - \frac{\cos 3x}{3}\right]\right]_{18}^{\frac{11\pi}{18}}$	M1
	$A = \left[\left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3\left(\frac{7\pi}{18}\right)}{3} \right) - \left(0 - \frac{\cos 3 \times 0}{3} \right) \right]$	
		M1

$$+ \left| \left[\left(\frac{1}{2} \times \frac{11\pi}{18} - \frac{\cos 3 \left(\frac{'11\pi'}{18}\right)}{3} \right) - \left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3 \left(\frac{7\pi}{18}\right)}{3} \right) \right] \right|$$

$$A = \left[(1.23287) + (0.22828) \right] = 1.46115... \approx 1.46$$

A1
[4]
Total 15 marks

Part	Mark	Notes
(a)	M1	Sets the equation equal to 0, solves using inverse sin and obtains a correct
		angle π
		$\frac{1}{2} + \sin 3x = 0 \implies \sin 3x = -\frac{1}{2} \implies 3x = -\frac{\pi}{6}$
		Condone working in degrees for M mark.
	A1 cso	For correctly obtaining $\left(\frac{7\pi}{18}, 0\right)$ * with no errors.
	CSU	Award for finding $\frac{7\pi}{18}$ and $\frac{11\pi}{18}$ but not shown as coordinates.
	A1	For correct coordinates of N: $\left(\frac{11\pi}{18}, 0\right)$
Alternati		od
	M1	For correct substitution of $\frac{7\pi}{18}$ into $\frac{1}{2} + \sin 3x$
	A1 cso	For correctly showing that $\frac{1}{2} + \sin\left(3 \times \frac{7\pi}{18}\right) = 0$ and stating $\left(\frac{7\pi}{18}, 0\right) *$
		Award for showing $\frac{7\pi}{18}$ and finding $\frac{11\pi}{18}$ but not shown as coordinates
	A1	For correct coordinates of N: $\left(\frac{11\pi}{18}, 0\right)$
(b)	M1	For attempt to differentiate $y = \frac{1}{2} + \sin 3x$, set equal to 0 and solve for x.
		$\frac{dy}{dx} = 3\cos 3x = 0 \Rightarrow 3x = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{6}$
		dx 2 6 Condone finding x in degrees for this mark.
		Attempt at differentiation of two terms:
		$\frac{1}{2} \rightarrow 0$
		2
	A1	$\sin(3x) \rightarrow k\cos(3x)$ For correctly obtaining $x = \frac{\pi}{6}$
		Note: Do not award this mark if $\frac{dy}{dx}$ is incorrect.
	dM1	Substitutes $x = \frac{\pi}{6}$ to find a value for y.
		$y = \frac{1}{2} + \sin 3 \left(\frac{\pi}{6} \right) = 1.5$
		Condone working with x in degrees for this mark.
	A1	For correct coordinates of A.
		$\left(\frac{\pi}{6},\frac{3}{2}\right)$
		Allow values equivalent to $\frac{3}{2}$
Alternati	ve metho	<u> </u>
	M1	For stating that the maximum of a sine curve is 1 and adding $\frac{1}{2}$
	A1	For correctly obtaining $y = \frac{3}{2}$
	dM1	For setting sin $3x$ equal to 1 and attempt to solve for x
		$\sin 3x = 1 \implies 3x = \frac{\pi}{2} \implies x = \frac{\pi}{6}$
		Condone working with x in degrees for this mark.

	A1	Equation of the electric $u = \pi$
		For correctly obtaining $x = \frac{\pi}{6}$
(c)	B1	For correct gradient at point M
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -\frac{3\sqrt{3}}{2}$
	M1	For a fully correct method of finding the equation of the tangent to C at M
		$y - 0 = ' - \frac{3\sqrt{3}}{2} ' \left(x - \frac{7\pi}{12} \right)$
		2 \ 187
		Allow use of their $-\frac{3\sqrt{3}}{2}$ obtained from substitution of $x = \frac{7\pi}{18}$ into their $\frac{dy}{dx}$.
	A1	For a correct equation of the tangent in any form:
		$y - 0 = -\frac{3\sqrt{3}}{2} \left(x - \frac{7\pi}{18} \right)$
	A1	For correct equation of the tangent in the required form:
		$12y + 18\sqrt{3}x - 7\sqrt{3}\pi = 0$
		Accept integer multiples of this equation.
(d)	M1	For identifying the correct limits to find the area above the curve and the area
		below the curve:
		$\left \int_{0}^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) + \left \int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) \right \operatorname{or} \int_{0}^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) - \int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) \right $
		Allow use of their $\frac{11\pi}{18}$. Needs to correctly indicate dealing with areas above
		and below axis.
	M1	For an attempt to integrate $\frac{1}{2}$ + sin 3x obtaining:
		$\frac{1}{2}x - k\cos 3x$ where $k \neq -3$
		For this mark ignore incorrect / absent limits.
	M1	For substituting limits correctly into their integrated expression (must be a
		changed expression).
		$A = \left[\left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3\left(\frac{7\pi}{18}\right)}{3} \right) - \left(0 - \frac{\cos 3 \times 0}{3} \right) \right]$
		$+ \left \left[\left(\frac{1}{2} \times \frac{11\pi}{18} - \frac{\cos 3\left(\frac{11\pi}{18}\right)}{3} \right) - \left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3\left(\frac{7\pi}{18}\right)}{3} \right) \right] \right $
		Allow use of their $\frac{11\pi}{18}$. Must show substitution or M0.
	A1	For correctly obtaining awrt 1.46

Question number	Scheme	Marks
11 (a)	$f(x) = \int ax^2 - 14x - 10 dx = \frac{ax^3}{3} - \frac{14x^2}{2} - 10x + c$	M1A1
	$f(4) = \frac{a \times 4^3}{3} - \frac{14 \times 4^2}{2} - 10 \times 4 + c = 0 \Longrightarrow \frac{64a}{3} - 152 + c = 0$	M1
	$f(-1) = \frac{a \times (-1)^3}{3} - \frac{14 \times (-1)^2}{2} - 10 \times (-1) + c = 25 \Longrightarrow -\frac{a}{3} - 22 + c = 0$	M1
	$\frac{64a}{3} - 152 + c = 0$	
	$-\frac{a}{3} - 22 + c = 0$	
	$\Rightarrow 152 - \frac{64a}{3} = 22 + \frac{a}{3} \Rightarrow a = 6$	M1A1 [6]
(b)	$c = 22 + \frac{6}{3} = 24$	B1
	$f(x) = 2x^3 - 7x^2 - 10x + 24$	
	$\frac{2x^2 + x - 6}{x - 4}$	M1A1
	f(x) = (x-4)(2x-3)(x+2) = 0	dM1A1
	$x = 4, \frac{3}{2}, -2$	A1 [6]
	ALT $2x^3 - 7x^2 - 10x + 24 = (x - 4)(ax^2 + bx + c)$ a = 2 $b = 1$ $c = -6$	[M1
	$a = 2, b = 1, c = -6$ $f(x) = (x - 4)(2x^{2} + x - 6)$	A1
	$f(x) = (x - 4)(2x^{2} + x - 6)$ f(x) = (x - 4)(2x - 3)(x + 2) = 0	dM1A1
	$x = 4, \frac{3}{2}, -2$	A1]
	Tota	l 12 marks

Part	Mark	Notes
(a)	M1	For an attempt to integrate $f'(x) = ax^2 - 14x - 10$
		See General Guidance on what constitutes an attempt to integrate.
	A1	For correctly integrating $f'(x)$ to obtain
		$f(x) = \frac{ax^3}{3} - \frac{14x^2}{2} - 10x + c$
		Must include $+c$ for this mark.
	M1	For substituting $x = \pm 4$ in their $f(x)$ and setting =0
	M1	For substituting $x = \pm 1$ in their f(x) and setting =25

	M1	For correct method to solve the equations simultaneously to find <i>a</i>		
	IVII	· · ·		
		A correct intermediate step is required e.g. $65a = 390$		
	A1	For fully correct working leading to $a = 6$		
	CSO			
(b)	B1	For correctly identifying $c = 24$		
	M1	For attempt to divide $f(x)$ by $x - 4$		
		Must get as far as $2x^2 + \cdots$		
	A1	For correct division of $f(x)$ by $x - 4$ to obtain $2x^2 + x - 6$		
	dM1	For an attempt to factorise their 3TQ which must come from a cubic.		
		See General Guidance on what constitutes an attempt to factorise.		
	A1	For obtaining correct factorisation of the cubic:		
		(x-4)(2x-3)(x+2)		
	A1	For all three correct solutions of the equation: $x = 4, \frac{3}{2}, -2$		
Alternative method				
	M1	For an attempt to find the quadratic factor that multiplies $x - 4$ to give $f(x)$		
		Must get as far as $f(x) = (x - 4)(2x^2 + bx + c)$		
	A1	For correctly comparing coefficients to obtain $2x^2 + x - 6$		
	dM1	For an attempt to factorise their 3TQ which must come from a cubic.		
		See General Guidance on what constitutes an attempt to factorise.		
	A1	For obtaining correct factorisation of the cubic:		
		(x-4)(2x-3)(x+2)		
	A1	For all three correct solutions of the equation: $x = 4, \frac{3}{2}, -2$		
	Note: C	orrect solution seen with no working scores B0M0A0M0A0A0		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom